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LETTER TO THE EDITOR

Entropic uncertainty relations for the infinite well

V Majerńık and L Richterek†
Department of Theoretical Physics, Palacký University, Svobody 26, CZ-771 46 Olomouc,
Czech Republic

Received 12 July 1996, in final form 23 September 1996

Abstract. We calculate the entropic and standard uncertainty relations for the position and
momentum of the infinite potential well as functions of its quantum states. We show that
the entropic uncertainty relations express more adequately the uncertainty principle than the
standard ones which use the dispersions as measures of the uncertainties for two non-commuting
observables.

1. Introduction

In recent years there has been considerable interest in determining the entropies of the
non-commuting observables of quantum systems mainly in order to formulate their entropic
uncertainty relations [1–3]. An entropic uncertainty relation represents the sum of entropies
of two non-commuting observables and is constructed as follows: consider a normalized
state vector|ψ〉 in an n-dimensional Hilbert space and let the observablesA andB have
non-degenerative spectra of eigenvectors|a〉 and|b〉, respectively. The entropic uncertainty
relation is an inequality of the form [1]

SA + SB > SAB (1)

where

SA = −
∑
i

|〈ψ |ai〉|2 log |〈ψ |ai〉|2

SB = −
∑
j

|〈ψ |bj 〉|2 log |〈ψ |bj 〉|2

andSAB is a positive constant which represents the lower bound of the right-hand side of the
inequality (1). For the continuous observablesAc andBc described by the wavefunctions
ψ(x) andφ(p), the inequality (1) reads

SAc + SBc > SAB
where

SAc = −
∫ ∞
−∞
|ψ(x)|2 log |ψ(x)|2 dx

SBc = −
∫ ∞
−∞
|φ(p)|2 log |φ(x)|2 dp.
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If one takes for the non-commuting observables the positionx and momentump of a
quantum system then the corresponding entropic uncertainty relation has the following form

Sx + Sp > Sxp (1a)

where

Sx = −
∫ ∞
−∞

q(x) logq(x) dx

and

Sp = −
∫ ∞
−∞

r(p) logr(p) dp

whereq(x) andq(p) are the probability density functions of the position and momentum,
respectively.

As is well known, the standard uncertainty relation is usually given in the form of the
Robertson formula [10]

4A4B > 1
2|〈9|[A,B]|9〉| (2)

where4A and4B are the dispersions of two non-commuting observablesA andB and
[A,B] is their commutator. It has been pointed by many authors that the Robertson form
of uncertainty relations has two serious shortcomings.

(i) The right-hand side of inequality (2) is not a fixed lower bound, but it depends on
the quantum state of the considered quantum system. If the observableA or B is in its
eigenstate then[A,B] = 0 and no restriction on4A or 4B is imposed by the left-hand
side of the inequality (2).

(ii) The dispersion may not represent the appropriate measure for the uncertainty of an
observable if its probability distribution exhibits some sharp distant peaks (for a detailed
discussion see [13]).

It has been found by many authors that the first-mentioned shortcoming does not occur
if one uses Shannon’s entropy for the uncertainties of the observables. We next show that
in the case of the infinite well its momentum entropy represents a more adequate measure
of uncertainty than does its dispersion.

2. Position–momentum uncertainty relations for the potential well

Position–momentum uncertainty relations, both entropic and standard, have been found for
many important quantum systems [2, 3, 7–9]. In what follows we determine them for the
infinite potential well. This quantum system can nicely illustrate the advantage of expressing
the uncertainty of position and momentum by means of their entropies (as in the entropic
uncertainty relation) instead of their dispersions (as in the standard uncertainty relation).
This is why the momentum probability density function of the potential well exhibits sharp
distant peaks for the quantum numbern > 1. In order to see this we plot the position and
momentum probability distribution in figure 1 forn = 1, 5 and 10 and note that two sharp
distant peaks occur in the momentum probability distribution except for the ground state.
It can be readily shown that the distance between the sharp peaks in the probability density
are located atξ = ± (n− 1/2) π (see figure 1).

In our further consideration we take a symmetric well potential defined as

V (x) = 0 for |x| < a and V (x) = +∞ for |x| > a.
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Figure 1. The position probability densities (a) and momentum probability densities (b) for the
symmetric infinite well corresponding ton = 1, 5, 10 (top, middle, bottom, respectively).

For the sake of simplicity we take only even solutions of the corresponding Schrödinger
equation. The symmetric eigenfunctions of the Schrödinger equation are [4, 6]

u+n =
1√
a

cos

[
(n− 1/2)πx

a

]
n = 1, 2, 3, . . .

with energy eigenvalues

E+n =
h̄2(2n− 1)2π2

8ma2
.

The corresponding momentum wavefunctions are given as the Fourier transforms ofu+n :

φ+n (p) =
1√
2πh̄

∫ +a
−a

u(+)n (x) exp(−ipx/h̄) dx

=
√

a

2πh̄

{
sin[(n− 1/2)π − ap/h̄]

[(n− 1/2)π − ap/h̄]
+ sin[(n− 1/2)π + ap/h̄]

[(n− 1/2)π + ap/h̄]

}
.

Sinceu+n andφ+n (p) are symmetric functions the dispersion of position and momentumMx
andMp as a function of quantum numbern is given by the integral

(4x(n))2 = 2
∫ a

0

1

a
cos

[
(n− 1/2)πx

a

]2

x2 dx
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and

(Mp(n))2 =
(
h̄

2πa

)2

2
∫ ∞

0
8(ξ)ξ2 dξ

where

8(ξ) =
{

sin[(n− 1/2)π − ξ ]

[(n− 1/2)π − ξ ]
+ sin[(n− 1/2)π + ξ ]

[(n− 1/2)π + ξ ]

}2

andξ = ap/h̄, respectively.
The entropy of position and momentum is

Sx(n) = −
∫ a

−a

{
cos

[
(n− 1/2)πx

a

]}2

log

{
cos

[
(n− 1/2)πx

a

]}2

dx

and

Sp(n) = − 1

2π

∫ ∞
−∞

8(ξ) log8(ξ) dξ

respectively.
The dispersions of position and momentum1x and1p for the potential well as functions

of n are known analytically (see, e.g., [11])

1x = a√
3

√
1− 6

n2π2
(3a)

and

1p = h̄
2

[
(2n− 1)π

a

]
. (3b)

Inserting1x(n) and1p(n) into the uncertainty product1x1p, we get

1x1p = h̄
2

[
(2n− 1)π√

3

√
1− 6

n2π2

]
.

It can be easily shown that for largen the position and momentum dispersions tend toa/
√

3
and(h̄nπ)/a, respectively, and the uncertainty product becomes a linear function ofn:

1x1p ≈ πh̄n√
3
.

The entropiesSx andSp as functions ofn are not known analytically. Recently, only the
asymptotic formula for the position entropy has been found [12]:

Sn(x) = ln(4a)− 1. (4)

Equations (3a) and (4) show that the position dispersion and entropy have essentially the
same asymptotical behaviour;1x(n) tends to a constant value, whileSx is ann-independent
constant. However, the momentum dispersion and entropy have different behaviour which
is closely connected with the second-mentioned shortcoming of the uncertainty relation.
Since the distance between the main peaks in the momentum probability density increases
linearly with n, the momentum dispersion also increases accordingly. On the other hand,
the momentum entropy does not essentially depend on this distance and remains practically
constant forn > 4 (see figure 2(c)). This causes the different behaviour of the uncertainty
product1x1p and the sum of entropiesSx + Sp.

In order to demonstrate this difference, we have calculated numerically the position
and momentum entropy of the potential well as a function of the quantum number for
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Figure 2. (a) The position–momentum uncertainty product (right-hand side of the standard
uncertainty relation), (b) the sum of position and momentum entropies (the right-hand side
of entropic uncertainty relation) and (c) dispersion and entropy of momentum as functions of
quantum numbern.

n = 1, 2, . . . ,10. (The calculations were performed usingMathematica[5].) To compare
the dependence of momentum dispersion and entropy on the quantum numbern we plot
both quantities in figure 2(c). We see that, whereas the momentum entropy only slightly
increases forn > 2, the corresponding dispersion increases almost directly proportional to
n. In figure 2(a) we plot the uncertainty product of position and momentum (the right-hand
side of inequality (2)).This product increases again proportional to the quantum numbern.
In figure 2(b) we plot the sum of position and momentum entropies (the right-hand side
of inequality (1a)). Figure 2 (a and b) shows how both considered quantities depend on
the quantum numbern. For n = 1, 2 and 3 the sum of entropies increases rapidly and
then it does only slowly. This indicates that the use of different measures for uncertainty
(dispersion or entropy) may lead to different dependences of the uncertainty relations on
the quantum numbern which is expressively shown for the infinite potential well.
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3. Conclusions

From what has been said so far we have the following.

(i) The infinite potential well is a suitable quantum system for demonstrating the
difference between the standard and entropic uncertainty relations.

(ii) In figure 1 we see that the probability distribution of position and momentum for
n = 1 is represented by a one-hump smooth curve whereas forn > 2 it is represented by
a set of peaks. This causes the uncertainty product of the standard uncertainty relation for
n = 1 to be small, 0.6 (in unit of h̄), which is only slightly different from the minimal
uncertainty product given by the Heisenberg uncertainty relation(0.5h̄).

(iii) There are two sharp peaks in the momentum probability distribution whose distance
increases with quantum numbern. Due to this fact the dispersions and entropies differ
considerably forn > 2. This suggests that the use of entropy as the uncertainty measure
corresponds generally more to the demands put upon the measure for the uncertainty than
does the dispersion.
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